Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Anal Chim Acta ; 1296: 342340, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401932

ABSTRACT

An optical system with low cost monitoring, high sensitivity, strong selectivity and much lower nickel ion (Ni2+) content in tap water than the World Health Organization (WHO) standard (1.19 µM) has been prepared by a simple strategy. This proposed ion-imprinted differential modulation system is based on the Bragg grating (FBG) and microfiber interferometer structure, and the interferometer sensing surface is coated with a polydopamine (PDA)/graphene oxide (GO) film to enhance its sensitivity. Combined with the ion imprinting technique, the microfiber interferometer sensor sensitivity can reach 0.32 nm/nM with the detection limit of 0.66 nM in the low concentration range (Ni2+ concentration range is 0 nM-100 nM). The experiment not only studies the principle of microfiber interferometer and FBG and their refractive index and temperature performance, but also shows that the FBG power change has a good fitting relationship with wavelength change. In addition, this system performance by the amount of power difference rather than the amount of wavelength shift, which significantly saves on the high cost weight, and size associated with the use of spectral analyzers in traditional inspection systems. This study provides a novel and easy method to develop new sensors with higher comprehensive performance.

2.
J Colloid Interface Sci ; 658: 903-912, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38157614

ABSTRACT

An all-fiber-optic system for rapid detection of antibiotic concentration, based on an optical enzyme biosensor with microfiber interferometer (MFI) and fiber gratings (FBGs) power variation, is proposed and experimentally validated. During the experiment, ß-lactamase(ß-LS) is fixed on the polyaniline (PANI)-coated optical fiber by cross-linking through glutaraldehyde (GA) covalent bonding. ß-LS can hydrolyze ß-lactam antibiotics to generate acidic by-products that transform polyaniline from the form of the emerald base to emerald salt, which results in the surface refractive index (RI) variation of MFI, to convert MFI wavelength and FBGs power macroscopic change for feedbackingly detecting the concentration of ß-lactam antibiotics. The detection of amoxicillin (AMX) in deionized water at concentrations in the range of 0.01-100 nM resulted in a wavelength change sensitivity of 0.6 nm/nM, and FBGs power difference change sensitivity of 1.3 dB/nM, with a detection limit LOD = 0.04 nM in real food and urine samples. The sensing system by the same calibration technique can detect antibiotic concentrations in different substances (tap water, milk and artificial urine). This developed all-fiber-optic system can be used as a rapid solution for the measurement of ß-lactam antibiotic residues in food and the environment.


Subject(s)
Aniline Compounds , Biosensing Techniques , beta Lactam Antibiotics , Equipment Design , Water
3.
Opt Express ; 31(21): 34470-34476, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859202

ABSTRACT

Realization of nonreciprocal transport is of great importance in the development of devices and systems that require the directional manipulation of signals or particles in information processing and modern physics. For ultracold atomic systems, the approaches based on synthetic dimensions have led to rapid advances in engineering quantum transport. Here, we use laser-coupled discrete momentum states of noninteracting ultracold atoms to synthesize a momentum lattice, and construct a closed ring with controllable tunneling phase in the momentum lattice. We measure the density evolution of atoms in the synthetic lattice with the single-site resolution, and observe the nonreciprocal dynamics by controlling the tunneling phase. We show the effect of both the applied phase and the coupling strength between two distinct population regions on the population distribution of atoms in the momentum lattice, and provide the optimal parameters for achieving the nonreciprocal transport.

4.
Phys Rev Lett ; 131(13): 133601, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37831993

ABSTRACT

Berry curvature is a fundamental element to characterize topological quantum physics, while a full measurement of Berry curvature in momentum space was not reported for topological states. Here we achieve two-dimensional Berry curvature reconstruction in a photonic quantum anomalous Hall system via Hall transport measurement of a momentum-resolved wave packet. Integrating measured Berry curvature over the two-dimensional Brillouin zone, we obtain Chern numbers corresponding to -1 and 0. Further, we identify bulk-boundary correspondence by measuring topology-linked chiral edge states at the boundary. The full topological characterization of photonic Chern bands from Berry curvature, Chern number, and edge transport measurements enables our photonic system to serve as a versatile platform for further in-depth study of novel topological physics.

5.
Eur J Med Chem ; 258: 115545, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37300914

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains a major global health problem and new therapeutic antitubercular agents are urgent needed. Among the novel antituberculosis drugs in the pipeline, Benzothiazinones (BTZs) are among the most potent antituberculosis agents against both drug-susceptible and multidrug-resistant (MDR) tuberculosis. Our group has focused on structural modifications of the side chain at C-2 position of the BTZ core and WAP-2101/2102 with excellent in vitro activity were discovered in our lab. However, the severe in vivo toxicity was observed during subsequent acute toxicity evaluation. Herein, a series of novel N-(amino)piperazinyl benzothiazinone derivatives were designed and synthesized as new anti-TB agents to reduce the in vivo toxicity. Our results show that majority of them exhibit the same potent or comparable activity against both MTB H37Rv and MDR-MTB strains (MIC: 4.00 - <1 ng/mL) as PBTZ169. Especially, compound 2c with low cardiac toxicity, low cell cytotoxicity and acceptable oral pharmacokinetic (PK) profiles have low acute toxicity in mice (LD50 > 500 mg/kg), suggesting it may serve as a promising lead compound for further antitubercular drug discovery.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Mice , Antitubercular Agents/toxicity , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy , Drug Discovery , Microbial Sensitivity Tests , Drug Design , Structure-Activity Relationship
6.
J Hazard Mater ; 453: 131450, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37088021

ABSTRACT

The remediation of soil contaminated with hydrophobic organic pollutants has attracted great public concern. In the present study, a novel catalyst using biochar supported ferro ferric oxide modified by carboxymethyl cellulose (CMC-Fe3O4/BC) was developed to activate the Fenton reaction for hazardous hydrophobic organic pollutants, and the degradation mechanisms were analyzed in terms of free radicals, electron transfer pathways and degradation intermediates. The results showed that the CMC-Fe3O4/BC-activated H2O2 system degraded nearly 100% of pyrene in the aqueous system after a 1440-min reaction. The catalyst was also applied to remediate industrial field soil contaminated with PAHs and γ-HCH. The removal rate of the total pollutants reached 61.1% after a 10-day reaction, which was higher than that of Fe3O4/BC without modification. CMC enabled the Fe3O4 particles to more equably distribute on the BC surface, further effectively activating H2O2 to generate more ⋅OH and forming different degradation products compared to the Fe3O4/BC. Additionally, the CMC-Fe3O4/BC-activated H2O2 system obviously enhanced electron transfer on the BC surface. Thus, the PAHs and γ-HCH could be degraded via electron transfer pathways.

7.
Medicine (Baltimore) ; 102(13): e33319, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37000113

ABSTRACT

This study aimed to formulate reliable nomograms for predicting the outcomes of α-fetoprotein (AFP)-negative hepatocellular carcinoma (HCC) patients after chemotherapy. HCC patients with normal AFP expression who received chemotherapy were screened and evaluated from the surveillance, epidemiology, and end results database. The prognostic factors for predicting outcomes of HCC patients undergoing chemotherapy were chosen by analyzing the results of Cox analyses. Then, a nomogram integrating the prognostic factors was established. The discrimination ability of the nomogram was evaluated with computation of area under the curve (AUC) and calibration curve. A total of 2424 patients with AFP-negative HCC undergoing chemotherapy were identified. The median overall survival (OS) for HCC patients undergoing chemotherapy was 33 months. Age, race, pathologic grade, N stage, M stage, surgery, and lung metastases were significantly linked to OS. These relevant factors were incorporated into the nomogram. AUC values of the prognostic nomogram for 3- and 5-year OS were 0.696 and 0.706 in the training groups, which were superior to those of the tumor node metastasis (TNM) stage (0.641 and 0.671) in training groups. The calibration curves indicated a high consistency between the predicted probability of nomograms and the actual observation. The validation groups produced AUC values of 0.674 and 0.736 for 3- and 5-year OS, which were superior to those of the TNM stage (0.601 and 0.637) in validation groups. The results revealed significantly unfavorable OS in the high-risk group (P < .001). Nomograms to accurately predict the OS for AFP-negative HCC patients after chemotherapy were established and exhibited a more accurate predication than the conventional TNM staging system.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Nomograms , Carcinoma, Hepatocellular/drug therapy , alpha-Fetoproteins , Liver Neoplasms/drug therapy , Prognosis , SEER Program , Neoplasm Staging
8.
Environ Res ; 227: 115695, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36958381

ABSTRACT

OBJECTIVE: Epidemiological studies have linked ambient pollutants with tuberculosis (TB) risk, but the association has not been fully understood. Here, for the first time, we applied whole-genome sequencing (WGS) to assess the reproductive state of Mycobacterium tuberculosis (MTB) by profiling the mutation rate of MTB (MTBMR) during within-host endogenous reactivated progression, intending to dissect the actual effects of ambient pollutants on the endogenous reactivation. METHODS: We conducted a retrospective cohort study on bacteriologically confirmed TB patients and followed them for relapse in Jiangsu and Sichuan Province, China. Endogenous and exogenous activation were distinguished by WGS of the pathogen. The average concentration of air pollution was estimated by considering a lag of 0-1 to 0-12 months. We applied a generalized additive model with a Poisson function to evaluate the relationships between ambient pollutants exposure and MTBMR. RESULTS: In the single-pollutant adjusted models, the maximum effect for PM10 (MTBMR increase: 81.87%, 95% CI: 38.38, 139.03) and PM2.5 (MTBMR increase: 73.91%, 95% CI: 22.17, 147.55) was observed at a lag of 0-12 months for every 10 µg/m³ increase. For SO2, the maximum effect was observed at lag 0-8 months, with MTBMR increasing by 128.06% (95% CI: 45.92, 256.44); and for NO2, the maximum effect was observed at lag 0-9 months, with MTBMR increasing by 124.02% (95% CI: 34.5, 273.14). In contrast, the O3 concentration was inversely associated with MTBMR, and the maximum reduction of MTBMR was 6.18% (95% CI: -9.24, -3.02) at a lag of 0-9 months. Similar results were observed for multi-pollutant models. CONCLUSIONS: Increased exposure to ambient pollutants (PM10, PM2.5, SO2, and NO2) contributed to a faster MTBMR, indicating that MTB exhibits increased reproductive activity, thus accelerating within-host endogenous reactivation. O3 exposure could decrease the MTBMR, suggesting that MTB exerts low reproductive activity by inhibiting within-host endogenous activation.


Subject(s)
Air Pollutants , Air Pollution , Environmental Pollutants , Mycobacterium tuberculosis , Tuberculosis , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Environmental Pollutants/toxicity , Particulate Matter/toxicity , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Retrospective Studies , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/analysis , Tuberculosis/epidemiology , China/epidemiology
9.
Eur J Med Chem ; 245(Pt 1): 114906, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36395647

ABSTRACT

We have already reported the modification on the piperazine and phenyl rings of JNJ4796, a small-molecule fuse inhibitor targeting hemagglutinin (HA). In this study, we described the structure-activity relationship of the benzoxazole and tetrazole rings of JNJ4796. Many derivatives demonstrated good in vitro activity against IAV H1N1and Oseltamivir-resistant IAV H1N1 stains. Although compounds (R)-1e and (R)-1h exhibited excellent in vitro activity, high drug exposure level and low hERG inhibition, they displayed low oral efficacy. Excitedly, (R)-1a, a representative identified in our previous study, was found to show potent in vivo anti-IAV activity with the survival rates of 100%, 100% and 70% at 15, 5 and 1.67 mg/kg, respectively, comparable to JNJ4796. Currently, we are exploring different ways to ease its gastrointestinal response.


Subject(s)
Antiviral Agents , Benzoxazoles , Influenza A Virus, H1N1 Subtype , Piperazines , Tetrazoles , Benzoxazoles/chemistry , Benzoxazoles/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Piperazines/chemistry , Piperazines/pharmacology , Tetrazoles/chemistry , Tetrazoles/pharmacology , Structure-Activity Relationship , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans
10.
J Colloid Interface Sci ; 632(Pt B): 271-284, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36435070

ABSTRACT

Stirring-promoted piezo-photocatalysis based on a three-dimensional foam architecture has great potential applications in wastewater treatment and water splitting. However, the detailed mechanism of stirring-promoted piezo-photocatalysis has not been quantitatively studied, and the utilization of visible light needs to be further improved. In this work, the high solar-driven piezo-photocatalytic ability of graphite carbon nitride (g-C3N4)-decorated zinc oxide (ZnO) nanoarrays on nickel (Ni) foam is experimentally achieved and first simulated by the finite element method (FEM). The water flow velocity, depending on the stirring rate, is significantly increased by turbulence-induced fluid eddies while flowing through 3D macropores and nanoarrays, resulting in higher piezoelectricity. Reactive oxygen species (ROS) are experimentally examined by the electron spin resonance (ESR) technique and theoretically calculated by density functional theory (DFT) to confirm the configurations of the heterojunction under photocatalysis and piezo-photocatalysis. In particular, the large enhancement of 1O2 generation suggests the potential of piezo-photocatalysis in biological applications. The mechanism of piezo-photocatalysis is proposed in which the S-scheme heterojunction is realized by piezoelectricity to improve photocatalysis by retaining high redox ability and inhibiting recombination. This work provides a possible approach to harvesting energy sources for piezoelectricity and expands the scope of solar-driven piezo-photocatalysis.

11.
Front Public Health ; 10: 978159, 2022.
Article in English | MEDLINE | ID: mdl-36081471

ABSTRACT

During the COVID-19 pandemic in 2020, a tuberculosis outbreak occurred in a university in eastern China, with 4,488 students and 421 staff on the campus. A 19-year-old student was diagnosed in August 2019. Later, the first round of screening was initiated among close contacts, but no active cases were found. Till September 2020, four rounds of screening were performed. Four rounds of screening were conducted on September 9, November 8, November 22-25 in 2019 and September 2020, with 0, 5, 0 and 43 cases identified, respectively. A total of 66 active tuberculosis were found in the same university, including 4 sputum culture-positive and 7 sputum smear-positive. The total attack rate of active tuberculosis was 1.34% (66/4909). The whole-genome sequencing showed that the isolates belonged to the same L2 sub-specie and were sensitive to all tested antituberculosis drugs. Delay detection, diagnosis and report of cases were the major cause of this university tuberculosis epidemic. More attention should be paid to the asymptomatic students in the index class. After the occurrence of tuberculosis cases in schools, multiple rounds of screening should be carried out, and preventive therapy should be applied in a timely manner.


Subject(s)
COVID-19 , Tuberculosis , Adult , COVID-19/epidemiology , China/epidemiology , Disease Outbreaks , Humans , Pandemics , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Tuberculosis/prevention & control , Universities , Young Adult
12.
Phys Rev Lett ; 129(10): 103401, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36112456

ABSTRACT

A mobility edge, a critical energy separating localized and extended excitations, is a key concept for understanding quantum localization. The Aubry-André (AA) model, a paradigm for exploring quantum localization, does not naturally allow mobility edges due to self-duality. Using the momentum-state lattice of quantum gas of Cs atoms to synthesize a nonlinear AA model, we provide experimental evidence for a mobility edge induced by interactions. By identifying the extended-to-localized transition of different energy eigenstates, we construct a mobility-edge phase diagram. The location of a mobility edge in the low- or high-energy region is tunable via repulsive or attractive interactions. Our observation is in good agreement with the theory and supports an interpretation of such interaction-induced mobility edge via a generalized AA model. Our Letter also offers new possibilities to engineer quantum transport and phase transitions in disordered systems.

13.
Molecules ; 27(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36144778

ABSTRACT

A series of exohedral actinide borospherenes, An&Bm, and endohedral borospherenes, An@Bn (An=U, Np, Pu; m = 28, 32, 34, 36, 38, 40; n = 36, 38, 40), have been characterized by density functional theory calculations. The electronic structures, chemical bond topological properties and spectra have been systematically investigated. It was found that An@Bn is more stable than An&Bn in terms of structure and energy, and UB36 in an aqueous solution is the most stable molecular in this research. The IR and UV-vis spectra of An&Bm and An@Bn are computationally predicted to facilitate further experimental investigations. Charge-transfer spectroscopy decomposes the total UV-Vis absorption curve into the contributions of different excitation features, allowing insight into what form of electronic excitation the UV-Vis absorption peak is from the perspective of charge transfer between the An atoms and borospherenes.

14.
Nanomaterials (Basel) ; 12(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36144920

ABSTRACT

The modulation of exciton energy and state density of layer-structured transition metal dichalcogenides (TMDs) is required for diverse optoelectronic device applications. Here, the spontaneous inversion of exciton state population in monolayer MoS2 is observed by turning the pump light power. The excitons prefer to exist in low energy state under low pump power, but reverse under high pump power. To discuss the mechanism in depth, we propose a semiclassical model by combining the rate equation and photo-exciton interaction. Considering the modifying of exciton-exciton annihilation, the spontaneous inversion of exciton state population is phenomenologically described.

15.
Phys Rev Lett ; 129(4): 046401, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35939012

ABSTRACT

Topological insulators host topology-linked boundary states, whose spin and charge degrees of freedom could be exploited to design topological devices with enhanced functionality. We experimentally observe that dissipationless chiral edge states in a spin-orbit coupled anomalous Floquet topological phase exhibit topological spin texture on boundaries, realized via a two-dimensional quantum walk. Our experiment shows that, for a walker traveling around a closed loop along the boundary in real space, its spin evolves and winds through a great circle on the Bloch sphere, which implies that edge-spin texture has nontrivial winding. This topological spin winding is protected by a chiral-like symmetry emerging for the low-energy Hamiltonian. Our experiment confirms that two-dimensional anomalous Floquet topological systems exhibit topological spin texture on the boundary, which could inspire novel topology-based spintronic phenomena and devices.

16.
Phys Chem Chem Phys ; 24(24): 15135-15139, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35699449

ABSTRACT

We report the high-resolution photoassociation (PA) spectroscopy of 23Na excited from the spin-1 Bose-Einstein Condensate (BEC) to the molecular state of 0g-(P3/2)v = 4 and 1g(P3/2)v = 91. By comparing the PA spectra of different spin configurations, we experimentally studied the effect of spin on the PA spectra. The experimental spectra comply well with the theoretical consideration. The results will play an important role in the study of the spin interaction and control of the antiferromagnetism in Na.

17.
Zhongguo Zhong Yao Za Zhi ; 47(2): 433-436, 2022 Jan.
Article in Chinese | MEDLINE | ID: mdl-35178986

ABSTRACT

The genus Rabdosia is famous for the abundance of diverse and novel ent-kaurane diterpenoids. However, only a few ent-kauranoids have been discovered from R. flexicaulis since the investigation on its chemical constituents is not systematic. To find novel bioactive diterpenoids, the ethyl acetate extract of the above ground part of R. flexicaulis in Daofu County, Sichuan Province was obtained by column chromatography. One new compound and five known ones were identified as flexicaulin E(1), forrestin B(2), inf-lexarabdonin D(3), 7α-hydroxydehydroabietic acid(4), 15-hydroxydehydroabietic acid(5), and pomiferin F(6) by spectral techniques. Compounds 1-3 were the ent-kaurane diterpenoids isolated from this species for the first time. Compounds 4-6, aromatic abie-tanoids, were isolated from the genus Rabdosia for the first time.


Subject(s)
Diterpenes, Kaurane , Diterpenes , Isodon , Isodon/chemistry , Molecular Structure , Plant Extracts/chemistry
18.
J Phys Condens Matter ; 34(14)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35026747

ABSTRACT

We performab initiosimulations of beryllium (Be) and magnesium oxide (MgO) at megabar pressures and compare their structural and thermodynamic properties. We make a detailed comparison of our two recently derived phase diagrams of Be (Wuet al2021Phys. Rev.B104014103) and MgO (Soubiran and Militzer 2020Phys. Rev. Lett.125175701) using the thermodynamic integration technique, as they exhibit striking similarities regarding their shape. We explore whether the Lindemann criterion can explain the melting temperatures of these materials through the calculation of the Debye temperature at high pressure. From our free energy calculations, we find that the melting line of both materials is well represented by the Simon-Glazel fitTm(P) =T0(1 +P/a)1/c, whereT0= 1564 K,a= 15.8037 GPa andc= 2.4154 for Be, whileT0= 3010 K,a= 10.5797 GPa andc= 2.8683 for the MgO in the B1. For the B2 phase, we use the valuesa= 26.1163 GPa andc= 2.2426. Both materials exhibit negative Clapeyron slopes on the boundaries between the two solid phases that are strongly affected by anharmonic effects, which also influence the location of the solid-solid-liquid triple point. We find that the quasi-harmonic approximation underestimates the stability range of the low-pressure phases, namely hcp for Be and B1 for MgO. We also compute the phonon dispersion relations at low and high pressure for each of the phases of these materials, and also explore how the phonon density of states is modified by temperature. Finally, we derive secondary shock Hugoniot curves in addition to the principal Hugoniot curve for both materials, and study their offsets in pressure between solid and liquid branches.

19.
Light Sci Appl ; 11(1): 13, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996893

ABSTRACT

Synthetic gauge fields in synthetic dimensions are now of great interest. This concept provides a convenient manner for exploring topological phases of matter. Here, we report on the first experimental realization of an atom-optically synthetic gauge field based on the synthetic momentum-state lattice of a Bose gas of 133Cs atoms, where magnetically controlled Feshbach resonance is used to tune the interacting lattice into noninteracting regime. Specifically, we engineer a noninteracting one-dimensional lattice into a two-leg ladder with tunable synthetic gauge fields. We observe the flux-dependent populations of atoms and measure the gauge field-induced chiral currents in the two legs. We also show that an inhomogeneous gauge field could control the atomic transport in the ladder. Our results lay the groundwork for using a clean noninteracting synthetic momentum-state lattice to study the gauge field-induced topological physics.

20.
Int J Infect Dis ; 116: 14-20, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34954094

ABSTRACT

BACKGROUND: The purpose of this meta-analysis (PROSPERO number: CRD42021243204) is to perform extensive and penetrating analyses on the risk factors associated with reactivation or reinfection. METHODS: We searched PubMed and Embase using search terms. Risk factors (including gender, length of time between first onset and recurrent diagnosis, extrapulmonary tuberculosis, sputum smear, pulmonary cavity, Beijing family strains, diabetes, HIV infection, history of imprisonment, and immigration) were analyzed. The pooled risk ratio (RR) and 95% confidence interval (CI) were calculated with STATA 15.1. Heterogeneity was evaluated by I2 and P values. RESULTS: The meta-analysis included 25 studies with a total of 1,477 recurrent patients. After subgroup analysis, sensitivity analysis, and testing for publication bias, it was concluded that time spanning less than two years (RR = 1.56, 95% CI: 1.33-1.85) was a risk factor for endogenous reactivation, whereas coinfection with HIV (RR = 0.72, 95% CI: 0.63-0.83), Beijing family genotype (RR = 0.46, 95% CI: 0.32-0.67), history of imprisonment (RR = 0.36, 95% CI: 0.16-0.81), and immigration (RR = 0.66, 95% CI: 0.53-0.82) were associated with exogenous reinfection. CONCLUSIONS: The recurrence interval is a risk factor for the endogenous reactivation of tuberculosis. Infection with Beijing family strains, coinfection with HIV, imprisonment, and immigration contribute to the risk of exogenous reinfection.


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Emigration and Immigration , HIV Infections/complications , HIV Infections/epidemiology , Humans , Mycobacterium tuberculosis/genetics , Reinfection , Risk Factors , Tuberculosis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...